Periodic Classification of elements

- Newlands' Law of Octaves
- Mendeleev's Periodic Table
- Modern Periodic Table

Dobereiner's Triads

- Tried to arrange elements in group of 3- called Triads
- the atomic mass of the middle element was roughly the average of the atomic masses of the other two elements.
- Li- 6.3, Na-23, K- 39

Limitation

Only 3 triads identified

Table 5.2 Döbereiner's triads

Li	Ca	Cl
Na	Sr	Br
Κ	Ba	Ι

Newlands Law of Octaves

- In 1866, John Newlands arranged the then known elements in the order of increasing atomic masses
- Started with hydrogen (1) and ended with thorium (56)
- Every 8th element had similar property as first

Table 5.3 Newlands' Octaves

Notes of music:	sa (do)	re (re)	ga (mi)	ma (fa)	pa (so)	da (la)	ni (ti)
	Н	Li	Be	В	С	N	0
	F	Na	Mg	Al	Si	Р	S
	Cl	K	Ca	Cr	Ti	Mn	Fe
	Co and Ni	Cu	Zn	Y	In	As	Se
	Br	Rb	Sr	Ce and La	Zr	-	-

Newlands Law of Octaves-Limitations

Some Unlike elements under the same note

Ex: cl and co. Co more like fe, which is at far end of table

Table 5.3 Newlands' Octaves

Notes of music:	sa (do)	re (re)	ga (mi)	ma (fa)	pa (so)	da (la)	ni (ti)
	Н	Li	Be	В	С	N	0
	F	Na	Mg	Al	Si	Р	S
	Cl	K	Са	Cr	Ti	Mn	Fe
	Co and Ni	Cu	Zn	Y	In	As	Se
	Br	Rb	Sr	Ce and La	Zr	-	_

Mendeleev's Periodic Table

- Elements arranged based on
- 1. Fundamental property- Atomic Mass
- 2. Similarity of the Chemical Properties
- Chemical Property determined based on formation of compounds on reacting with oxygen and hydrogen- 2 most reactive elements

MENDELEEV PERIODIC TABLE

Table 5.4 Mendeléev's Periodic Table

Group	I	Π	ш	IV	v	VI	VII	VIII
Oxide Hydride	R₂O RH	$ m RO m RH_2$	R_2O_3 RH $_3$	RO_2 RH_4	R_2O_5 RH ₃	$\frac{\mathrm{RO}_3}{\mathrm{RH}_2}$	R ₂ O ₇ RH	RO_4
Periods ↓	A B	A B	A B	A B	A B	A B	A B	Transition series
1	H 1.008							
2	Li 6.939	Be 9.012	В 10.81	C 12.011	N 14.007	O 15.999	F 18.998	
3	Na 22.99	Mg 24.31	Al 29.98	Si 28.09	P 30.974	S 32.06	Cl 35.453	
4 First series: Second series:	K 39.102 Cu 63.54	Ca 40.08 Zn 65.37	Sc 44.96 Ga 69.72			Cr 50.20 Se 78.96		
5 First series: Second series:	Rb 85.47 Ag 107.87		Y 88.91 In 114.82	Zr 91.22 Sn 118.69	Sb	Mo 95.94 Te 127.60	99 I	Ru Rh Pd 101.07 102.91 106.4
6 First series: Second series:	Cs 132.90 Au 196.97	Hg	La 138.91 Tl 204.37	178.49 Pb		W 183.85		Os Ir Pt 190.2 192.2 195.09

Vertical: Group Horizontal: period Anamoly: Co and Ni

Achievements of Mendeleev Periodic Table

- Predicted the existence of some elements by leaving gaps in periodic table
- Gave a prefix Eka to such elements in the same group
- When Noble gases were discovered, they could be placed undisturbed in a new group

Table 5.5 Properties of *eka*-aluminium and gallium

Property	<i>Eka</i> -aluminium	Gallium			
Atomic Mass	68	69.7			
Formula of Oxide	E_2O_3	Ga ₂ O ₃			
Formula of Chloride	ECl ₃	GaCl ₃			

Mendeleev table-Limitations 1. No fixed position for Hydrogen. This was due to isotopes being discovered long after Mendeleev periodic table.

 Atomic masses do not increase in a regular manner. Hence not possible to predict how many element could be discovered between
 elements

Compounds of H	Compounds of Na
HCl	NaCl
$H_{2}O$	Na ₂ O
H_2S	Na_2S

Modern periodic Table- Henry Moseley

- 1. Moseley showed that atomic number is more of fundamental property than atomic mass
- 2. Elements arranged based on increasing atomic number
- 3. Due to this arrangement, prediction of new elements were more precise
- 4. Anomalies of Mendeleev table resolved

MODERN PERIODIC TABLE

$ \begin{array}{c} \text{GRUP NUMBER} \\ & & & & & & & & & & & & & & & & & & $							Met	tals		Me	talloids		N	on-metals		Ч	sepa meta	zigzag l rates the als from metals.	•	
Image: Proper term Construction Constru		G	ROUPN	UMBE	R															
1 Horson 2 13 14 15 16 17 Hermonic Mathematic Mathematin Mathematic Mathematin M		[1													GRO	OUP NU	MBER		
3 4 1 12 5 6 7 8 9 10 Base 0.0 11 11 120 143 16 17 18 11 11 120 144 15 16 17 18 10 120		1	Hydrogen 1.0	2	(X									13	14	15	16	17	He
6.9 9.0 10 12.0 14.0 15.0 16.0 17.0 18.0 P 3 11 Na Mg Mg 3 4 5 6 7 8 9 10 11 12 Aluming Station Provide the subscription Station Station Station Station Station Station Station Station Station Sta]	$\langle \rangle$)							-			-	10
P 3 11 12 Mg Mg Mg Mg Solid (235) P Solid (235) Solid (235) <t< td=""><td></td><td>2</td><td>Lithium</td><td>Beryllium</td><td></td><td></td><td></td><td>G</td><td>ROUPN</td><td>UMBE</td><td>ER</td><td></td><td></td><td></td><td>Boron</td><td>Carbon</td><td>N Nitrogen</td><td>O Oxygen</td><td>F Fluorine</td><td>Neon 20.2</td></t<>		2	Lithium	Beryllium				G	ROUPN	UMBE	ER				Boron	Carbon	N Nitrogen	O Oxygen	F Fluorine	Neon 20.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				12	←			5							13	14	15	16	17	18
R 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 B Ca Sc Tin V Crr Mn Fe Co Nikki Copper Zinc Ga Ge Ge Ge Ge Ge	Е	3	Sodium	Magnessiam	3	4	5	6	7	8	9	10	11	12	Aluminium 27.0	Silicon 28.1	Phosphorus 31.0	Sulphur 32.1	Chlorine 35.5	Argon
0 1			19	20											31		33	34	35	36
D 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zirocium Nibum Mohum Construint Rubeinim Rubeinim <t< td=""><td>-</td><td>4</td><td>Potassium</td><td>Calcium</td><td>Scandium</td><td>Titanium</td><td>Vanadium</td><td>Chromium</td><td>Manganese</td><td>Iron</td><td>Cobalt</td><td>Nickel</td><td>Coppe</td><td>er Zine</td><td>Gallium</td><td>Germanium</td><td>Arsenic</td><td>Selenium</td><td>Bromine</td><td>Krypton</td></t<>	-	4	Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Coppe	er Zine	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
Store Store Num																				
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Costion Bas Las* Hitchin Table Table Weight Rec. Opening Initial Provide Provide<	s	5	Rubidium	Strontium	Yttrium	Ziroonium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladiur	n Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
87 Price 88 Ra (226) 89 Ra (226) 104 Ra (226) 105 (287) 106 Db (289) 107 BBh (289) 108 Bbh (289) 109 Hastum (270) 110 Hut 110 Db Bak (270) 111 Hastum (270) 112 Bastum (281) 113 Reservice (282) 114 Ch 115 Hastum (280) 116 Hut 117 Hostovice (281) 116 Reservice (282) 114 Ch 115 Hastum (280) 116 Hut 117 Hostovice (281) 114 Reservice (282) 114 Ch 115 Hastum (280) 116 Hut 117 Hostovice (281) 114 Reservice (282) 114 Hut 115 Hastum (280) 116 Hut 117 Hostovice (281) 114 Hut 115 Hastum (280) 114 Hut 115 Hastum (280) 116 Hut 117 Hostovice (281) 114 Hut 115 Hastum (280) 114 Hut 115 Hastum (280) 114 Hut <td></td>																				
87 Price 88 Ra (226) 89 Ra (226) 104 Ra (226) 105 (287) 106 Db (289) 107 BBh (289) 108 Bbh (289) 109 Hastum (270) 110 Hut 110 Db Bak (270) 111 Hastum (270) 112 Bastum (281) 113 Reservice (282) 114 Ch 115 Hastum (280) 116 Hut 117 Hostovice (281) 116 Reservice (282) 114 Ch 115 Hastum (280) 116 Hut 117 Hostovice (281) 114 Reservice (282) 114 Ch 115 Hastum (280) 116 Hut 117 Hostovice (281) 114 Reservice (282) 114 Hut 115 Hastum (280) 116 Hut 117 Hostovice (281) 114 Hut 115 Hastum (280) 114 Hut 115 Hastum (280) 116 Hut 117 Hostovice (281) 114 Hut 115 Hastum (280) 114 Hut 115 Hastum (280) 114 Hut <td></td> <td>6</td> <td>Cacsium</td> <td>Barium</td> <td>Lanthanum</td> <td>$\underset{\rm Hafnium}{Hf}$</td> <td>Ta Tantalum</td> <td>W</td> <td>Re</td> <td>Osmium</td> <td>Ir</td> <td>Platinum</td> <td>Au Gold</td> <td>Hg</td> <td>Ti</td> <td>Pb</td> <td>Bismuth</td> <td>Polonium</td> <td>At</td> <td>Rn</td>		6	Cacsium	Barium	Lanthanum	$\underset{\rm Hafnium}{Hf}$	Ta Tantalum	W	Re	Osmium	Ir	Platinum	Au Gold	Hg	Ti	Pb	Bismuth	Polonium	At	Rn
Production (227) Radiation (227) Actionation (227) Relativity (268) Relativity (268) Behrium (268) Behrium (268) Behrium (277) Behrium (277) Behrium (277) Damitadium (281) Copensidium (282) Cibication (285) Flowyoit (285) Moscovium (286) Moscovium (280) Moscovium (2					89										1					
*Lanthanoides 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Print Printip P		7	Franciam	Radium	Actinium	(Ratherfordiam)	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadti	ium Roentgen	ium Copernicium	(Nihonium)	Flerovium	Moscovium	Livernorium	Tennessine	Oganesson
* Lanthanoides Ce Crime 1601 Pre- Presoderinim 1601 Nd Noderinim 1442 Pre- Presoderinim 1520 Sm Buserinim 1520 Eu Galitizar 1520 Tb Obserini 1533 Dy Dyeedan 1533 Hoo Distance Er Distance Tm Distance Yb Distance Lu Laterun 1733 ** Actinoides Pa Thomp Pa Pa During 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Thomp Pa During Np Pu During Np Pu During American Current Current Betware During Officiary During Pre- During Note (In- During) Note (In-		l	(223)	(226)	(227)	(267)	(268)	(269)	(270)	(277)	(278)	(281)	(282)	(285)	(286)	(289)	(290)	(293)	(294)	(294)
* Lanthanoides Ce Crime 1601 Pre- Presoderinim 1601 Nd Noderinim 1442 Pre- Presoderinim 1520 Sm Buserinim 1520 Eu Galitizar 1520 Tb Obserini 1533 Dy Dyeedan 1533 Hoo Distance Er Distance Tm Distance Yb Distance Lu Laterun 1733 ** Actinoides Pa Thomp Pa Pa During 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Thomp Pa During Np Pu During Np Pu During American Current Current Betware During Officiary During Pre- During Note (In- During) Note (In-				_													10			_
** Actinoides Point Nd Medipular 164:1 Prim Vertexina 144:2 Nd Medipular 144:2 Prim President (144:1) Simi Strature 190:4 Dispute Dispute 152:0 Dispute Galiditum 153:3 Dispute Toppin Dispute Dispute 153:3 Eff Dispute 164:9 I min Dispute 164:9 Yub kan Dispute 164:9 Lift Dispute 164:9 ** Actinoides 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Throw Page dispute Np Pute American American Curran Betware Officing and Dispute Dispute Dispute No 102 103		* T	anthanc	nides																
** Actinoides 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Junitary Puttern American Curring Bedrage Officiant Proton Fredering Noted		1	Jununun	nues	Cerium	Praseodymium	Neodymium	Promethium	Samarium	n Europi	ium Gado	linium	Terbium	Dysprokium 162.5	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
In Pratu U ANP Pu Am Cun BK CI ES Fm Md Network Not Lawrence					90	91	92	93	94	95	5 9	6	97		99	100	101	102	103	
6260 (621) 4216 (621) (621) (621) (621) (621) (621) (621) (621) (621) (621) (621) (621)		•	* Actino	oides	Thorium 232.0	Protectinium (231)	Unation 238.1		Plutonium (242)	n Ameria	ian Cu	rium	Berkellum (245)	Cf Californium (251)	Es Einstenium (254)	Fm (253)	Mendelevium (256)	Nobelium (254)	Lawerneka (257)	n

Table 5.6 Modern Periodic Table

10

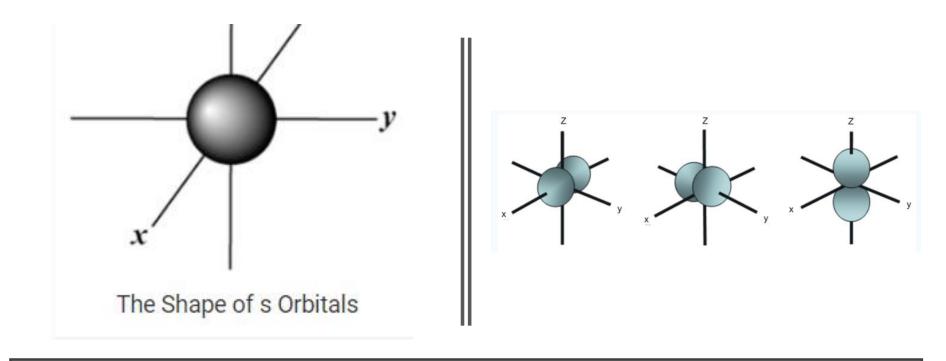
Filling up of electron Shells-Principal Quantum Number (n)

- Closest shell to nucleus is K shell, next L, M and so on
- Principal Quantum numbers are n= 1,2,3, 4 etc
- Each shell holds 2n2 Electrons
- K-2 electrons
- L 8 electrons
- M -18 Electrons
- N 32 Electrons

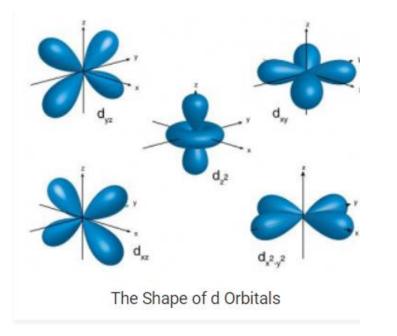
Electron Sub Shells-Azimuthal Quantum Number (I)

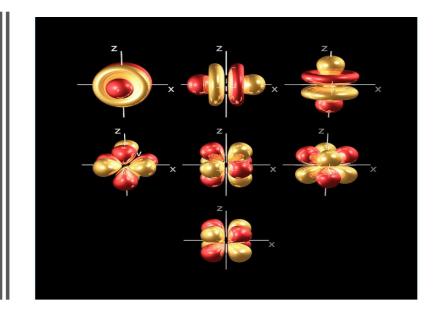
- In each shell, electrons exist in sub-energy levels or sub-shells.
- Azimuthal Quantum number defines the sub shells, having values from 0 to n-1, as follows
- If n=1, l=0 (Only 1 value->1 level -> s)
- If n=2, l=0,1 (2 values->2 levels->s,p)
- If n=3, l=0,1,2 (3 values->3 levels->s,p,d)
- If n=4, l=0,1,2,3 (4 values->4 levels->s,p,d,f)

Electron Sub Shells-Azimuthal Quantum Number (I)


- The sub shells are named s,p,d and f. Maximum electrons in each sub shell is as follows (Given by 4l+2)
- s 2 electrons
- p- 6 electrons
- d-10 Electrons
- f- 14 Electrons

Azimuthal Quantum number I for sub-shells are: s=0, p=1,d=2 and f=3


Orbitals in Sub Shells-Magnetic Quantum Number (m)


- In a strong magnetic field, the sub-shells are resolved into different orientations denoted by magnetic quantum number m
- This value depends on I. where m=-I through 0 to +I

	Relationship between Quantum Numbers									
Orbital		Values	Number of Values for $m^{[4]}$	Electrons per subshell						
S	$\ell = 0,$	$m_l=0$	1	2						
р	$\ell = 1,$	$m_l=-1,0,+1$	3	6						
d	$\ell = 2,$	$m_l=-2,-1,0,+1,+2$	5	10						
f	$\ell = 3,$	$m_l = -3, -2, -1, 0, +1, +2, +3$	7	14						
g	$\ell = 4,$	$m_l = -4, -3, -2, -1, 0, +1, +2, +3, +4$	9	18						

Shapes of the orbitals based on Azimuthal Quantum Number- S & P

Shapes of the orbitals based on Azimuthal Quantum Number- d & f $^{ m b}$

Spin Quantum Number (s)

- The electron in the atom rotates not only around the nucleus but also around its own axis and two opposite directions of rotation are possible (clock wise and anticlock wise).
- Therefore the spin quantum number can have only two values +1/2 or -1/2.

Pauli's exclusion principle

"it is impossible for any two electrons in a given atom to have all the four quantum numbers identical" i.e., in an atom, two electrons can have maximum three quantum numbers (n, / and m) the same and the fourth(s) will definitely be having a different value.

Thus if s = +1/2 for one electron, s should be equal to -1/2 for the other electron. In other words the two electrons in the same orbital should have opposite spins (⁻). Use of Pauli's principle

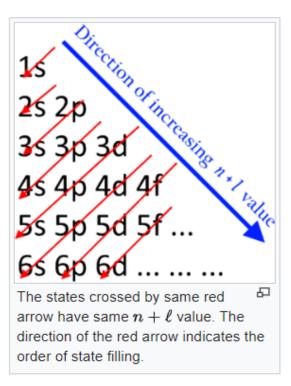
The greatest use of the principle is that it is helpful in determining the maximum number of electrons that a main energy level can have.

- Let us illustrate this point by considering K and L shells
- (a) K-shell: For this shell n = 1. For n = 1, l = 0 and m = 0. Hence s can have a value either +1/2 or -1/2. The different values of n, l, m and s given above give the following two combinations of the four quantum numbers, keeping in view the exclusion principle.
- Combination (i) is for one electron and combination (ii) is for the other electron.
- (i) n = 1, / = 0, m = 0
- *s* = +1/2 (1st electron)
- (ii) n = 1, / = 0, m = 0,
- *s* = -1/2 (2nd electron)
- (Two electrons in / = 0 sub-shell i.e., 1s-orbital)
- These two combinations show that in K shell there is only one subshell corresponding to *I* = 0 value (*s*-sub-shell) contains only two electrons with opposite spins.

Use of Pauli's principle

The greatest use of the principle is that it is helpful in determining the maximum number of electrons that a main energy level can have.

- (b) L-shell: For this shell n = 2. For n = 2 the different values of *l*, m and s give the following eight combinations of four quantum numbers.
- (i) n=2, l=0, m=0, s=+1/2
- (ii) n = 2, *l* = 0, m = 0, *s* = -1/2
- (iii) n = 2, / = 1, m = 0, s = +1/2
- (iv) n = 2, / = 1, m = 0, s = -1/2
- (v) n = 2, l = 1, m = +1, s = +1/2
- (vi) n = 2, *l* = 1, m = +1, *s* = -1/2
- (vii) n = 2, / = 1, m = -1, s = +1/2
- (viii) n = 2, / = 1, m = -1, s = -1/2
- Eight combinations given above show that L shell is divided into two sub-shells corresponding to *I* = 0 (*s* sub-shell) and *I* = 1 (p sub-shell) and this shell cannot contain more than 8 electrons, i.e., its maximum capacity for keeping the electrons is eight.


Aufbau principle

"In the ground state of the atoms, the orbitals are filled in order of their increasing energies" i.e., electrons first occupy the lowest-energy orbital available to them and enter into higher energy orbitals only after the lower energy orbitals are filled

The order in which the energies of the orbitals increase and hence the order in which the orbitals are filled is as follows: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s.....

Aufbau principle

Hund's Rule of maximum multiplicity

"Hund's rule of maximum multiplicity states, that in filling p, d or f orbitals, as many unpaired electrons as possible are placed before pairing of electrons with opposite spin is allowed"

Pairing of electrons requires energy. Therefore no pairing occurs until all orbitals of a given sublevel are half filled. This is known as Hund's rule of maximum multiplicity

Hund's rule of maximum multiplicity

- Thus, if three electrons are to be filled in the p- level of any shell, one each will go into each of the three (*px*, *py*, *pz*) orbitals.
- The fourth electron entering the plevel will go to px orbital which now will have two electrons with opposite spins (as shown in pic) and said to be paired. The unpaired electrons play an important part in the formation of bonds.

Atomic Number	Element	1 s	25	2px	2 p y	2pz	Number of unpaired electrons
1	Н	1					1
2	He	î↓					0
3	Li	î↓	1				1
4	Be	î↓	î↓				0
5	В	î↓	1↓	î	1		1
6	С	î↓	î↓	1	1		2
7	N	î↓	1↓	1	1	1	3
8	0	î↓	1↓	↑↓	1	1	2
9	F	î↓	↑↓	↑↓	î↓	1	1
,							

Stability of orbitals

- As per Hund's rule- Half filled or completely filled orbitals are stable
- The half-filled and completely filled electron configurations have symmetrical distribution of electrons and this symmetry leads to stability
- Thus the *p3,p6,d5,d10,f7* and *f14* configuration which are either completely filled or exactly half-filled are more stable.
- Moreover, in such configuration electron can exchange their positions among themselves to maximum extent

Filling up the orbitals and Hund's rule illustration

- Chromium- Atomic Number 24
- K-2, L-8, N-2, M-12- Expected
- K-2, L-8, N-1, M-13- Actual

Chromium

Expected configuration : $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^4$, $4s^2$ Actual configuration : $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^5$, $4s^1$ Electron exchange

- Copper- Atomic Number 29
- K-2, L-8, N-2, M-17- Expected
- K-2, L-8, N-2, M-17- Actual

Copper

Expected configuration : $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^9, 4s^2$ Actual configuration : $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^1$ Electron exchange